MATHS CALCULATION POLICY

Turning Small Wonders into Shining Lights

Reviewed March 2017

Tattingstone Primary School's Calculation Policy has been written to meet the requirements of the National Curriculum 2014 for the teaching and learning of Mathematics.

We have adopted the White Rose Hub's calculation document and adapted it to match our approach to the teaching and learning of mathematics. The White Rose Hub are currently one of the leading Maths Hubs for the development of Maths Mastery and one of their fundamental beliefs is that a mathematical concept is taught firstly with concrete materials, then pictorially and finally with an abstract representation. This learning process continues from Reception to Year 6, enabling children the opportunity to use concrete objects to make sense of a problem or concept and then leading them to apply their understanding to an abstract representation.

The calculation methods in this policy begin with a mental calculation method and lead towards the standard written calculation methods as advised in the National Curriculum Appendix 1, which is attached at the end of this policy.

Addition-

Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract			
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc)		4 + 3 = 7 (four is a part, 3 is a part and the whole is seven)			
Counting on using number lines by using cubes	A bar model which encourages the children	The abstract number line:			
or numicon	to count on	What is 2 more than 4? What is the sum			
	4 ?	of 4 and 4? What's the total of 4 and 2? 4 + 2			
Regrouping to make 10 by using ten frames	Children to draw the ten frame and	Children to develop an understanding of			
and counters/cubes or using numicon: 6 + 5	counters/cubes	equality e.g 6 + □ = 11 and 6 + 5 = 5 + □ 6 + 5 = □ + 4			

Subtraction-

Key language which should be used: take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Concrete	Pictorial	Abstract
Physically taking away and removing	Children to draw the concrete resources they are	4-3=
objects from a whole (use various	using and cross out.	
objects too) rather than crossing out- children will physically remove the objects 4-3=1	Use of the bar model:	= 4 - 3 4 3 7 4 7 3 3
Counting back (using number lines or	Children to represent what they see pictorially	
number tracks)	e.q.	
6-2	6	0 1 2 3 4 5 6 7 8 9 10
	x x x x x ? 2	46

Finding the difference (using cubes, numicon or Cuisenaire rods, other objects can also be used) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	Children to draw the cubes/other concrete objects which they have used XXXXXXXX XXXXXXX Use of the bar model 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Find the difference between 8 and 6. 8 - 6, the difference is ? Children to also explore why 9 - 7 = 8 - 6 (the difference, of each digit, has changed by 1 do the difference is the same- this will help when solving 10000-9987)
Making 10 (using numicon or ten frames) 14 - 5 Children could also do this by subtracting a 5 from the 10.	Children to present the ten frame pictorially	14 - 5 = 9 You also want children to see related facts e.g. 15 - 9 = 5 Children to represent how they have solved it e.g. 14 - 5 = 9 14 is made up of 5, 5 and 4 so I can subtract one 5 to be left with 4 and 5 14 - 5 = 9 5 is made up of 4 and 1 so I can subtract 4 to make 10 and then 1 to get to 9
Column method (using base 10) 48-7	Is μ μ μ	48-7= 48-7 - 7 4 1

		10	T		
Column method (using base 10 and	having Represent the b	ase 10 pictorially 45 — 26	It's crucial that the children		
to exchange)	Tens Ones		understand that when they have		
45-26			exchanged the 10 they still have 45.45		
			= 30 + 15		
1111 20 111 20 1			<u>×, \⊂</u>		
 Start by partitioning 45 					
Exchange one ten for ten mo	iore 🛔		<u> </u>		
ones			19		
Subtract the ones, then the	e tens. ¹ ⁹				
Column method (using place value	Once the childre	n have had practice with the	2^{2} 1		
counters) 234-88	concrete, they st	nould be able to apply it to any	234		
	subtraction.		-		
	2		- 88		
	Like the other pi	ctorial representations, children			
	to represent the	counters.	6		
			<u>~</u>		
Eluency variation	different w	ave to ack childre	n to colve 301-186.		
Thency variation	i, unterent w	uys to usk childre	n 10 solve 391-100.		
(391) F	Raj spent £391, Timmy	391 - 186	What's the calculation? What's the		
X s	spent £186. How much		answer?		
r h	more did Raj spend?	= 391 - 186	Hundneds Tens Ones		
	I had 391 metres to run.	391	000 C		
391	After 186 I stopped. How	196			
180 r	many metres do I have	-100			
	left to run?		3 9		
		Find the difference ebtween	-		
		391 and 186			
		Subtract 186 from 391.	0 5		
		What is 186 less than 391?			
-			•		

Multiplication-

Key language which should be used: double times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract		
Repeated grouping/repeated addition (does not have to be restricted to cubes) 3 x 4 or 3 lots of 4	Children to represent the practical resources in a picture e.g. XX XX XX XX XX XX Use of a bar model for a more structured method	3 × 4 4 + 4 + 4		
Use number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g: 0 4 8 12	Abstract number line 3 x 4 = 12 0 4 8 12		
Use arrays to illustrate commutativity (counters and other objects can also be used) 2 x 5 = 5 x 2	Children to draw the arrays	Children to be able to use an array to write a range of calculations e.g. 2 × 5 = 10 5 × 2 = 10 2 + 2 + 2 + 2 + 2 = 10 5 + 5 = 10		

Partition to multiply (use numicon, base 10, Cuisenaire rods) 4 × 15	Children to represent the concrete manipulatives in a picture e.g. base 10 can be represented like: 15 x 4 T O 	Children to be encouraged to show the steps they have taken 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used 40 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +
Formal column method with place value counters or base 10 (at the first stage- no exchanging) 3 x 23 Make 23, 3 times. See how many ones, then how many tens	Children to represent the counters in a pictorial way Tens Ones • • • • • • • • • • • • • • • • • • •	Children to record what it is they are doing to show understanding 3×23 $3 \times 20 = 60$ $3 \times 3 = 9$ 20 3 60 + 9 = 69 23 $\frac{\times 3}{69}$
Formal column method with place value counters (children need this stage, initially, to understand how the column method works)	Children to represent the counters/base 10, pictorially e.g. the image below.	6 × 23 6 × 3 = 18 6 × 20 = 120 120 + 18 = 138

6 x 23		The aim is to get to the formal method
Step 1: get 6 lots of 23	Hundreds Tens Ones	but the children need to understand
		how it works.
Char 2 : 6 - 2 is 10 Can T		
make an exchange? Yes!		6 x 23 =
Ten ones for one ten		• A 10
		23
Step 3: 6 x 2 tens and my		25
• *** extra ten is 13 tens. Can I		× 6
tens for one hundred		$\frac{700}{100}$
		138
Step 4- what do I have I		1.1
each column?		11
When children start to multiply 3d x 3d ar	l nd 4d x 2d etc, they should be confident with the al	ostract: 1 2 4
To get 744 children have colved 6 x 124		× 26
To get 2480 they have solved 20 x 124		7 4 4
5 ,		1 2 2 -4 8 0
		1 1
		Answer: 3224

Fluency variation	on, different wa	ays to ask childr	ren to solve 6 x 23:
23 23 23 23 23 23 ?	lengths, 6 times a week. How many lengths did she swim in one week?	23 6 x 23 =	answer?
With the counters, prove that 6 x 23 = 138 Why is 6 x 23 = 32 x 62	Tom saved 23p three days a week. How much did he save in 2 weeks?	$= 6 \times 23$ $= 6 \times 23$ $\times 23 \times 6$ = -	
Why is 6 x 23 = 32 x 6?			

Division-

Key language which should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Use of the 'bus stop method' us grouping and counters. Key langua grouping- how many groups of X c make with X hundreds'- this can done using sharing! 615 ÷ 5 Step 1: make 615	ing This can easily be repr ige for the children no longer ian we It can also be done to also be a remainder!	esented pictorially, till to do it. decimal places if you have	123 6 ¹ 1 ¹ 5
Step 2: Circle you groups of 5 Step 3: Exchange 10T and circle gro 5 Step 4: exchange 10ones and circles of 5	ur 2 1H for oups of 1T for groups		
Fluency variatio Using the part whole model below, how can you divide 615 by 5 without using the 'bus stop' method?	n, different ways I have £615 and share it equally between 5 bank accounts. How much will be in each account? 615 pupils need to be put into 5 groups. How many will be in each group?	to ask children 5 615 615 ÷ 5 = = 615 ÷ 5 How many 5's go into 615?	to solve 615 ÷ 5: What's the calculation? What's the answer?

Long division

Concrete	Pictorial	Abstract
Model Mo	Children to represent the counters, pictorially and record the subtractions beneath.	0 12 2 ² 544 Step one- exchange 2 thousand for 20 hundreds so we now have 25 hundreds.
Exchange 2 thousand for 20 hundreds.		Step two- How many groups of 12 can I make with 25 hundreds? The 24 shows the hundreds we have grouped. The one is how many
How many groups of How many groups of 12 2544 24 12 2544 12 2544 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one.		hundreds we have left.
Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14? 1 remainder 2. Exchange the two tens for two tens for		grouped and the 2 is how many 1 grouped and the 2 is how many tens I have left. $12 \begin{bmatrix} 0.212\\ 2544\\ 24\\ 14\\ 14\\ 12\\ 24\\ 12\\ 24\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 1$
24 ones. How many groups of 12 are in 24? 2		<u> </u>

Mathematics - key stages 1 and 2

Mathematics - key stages 1 and 2

Mathematics Appendix 1: Examples of formal written methods for addition, subtraction, multiplication and division

This appendix sets out some examples of formal written methods for all four operations to illustrate the range of methods that could be taught. It is not intended to be an exhaustive list, nor is it intended to show progression in formal written methods. For example, the exact position of intermediate calculations (superscript and subscript digits) will vary depending on the method and format used.

For multiplication, some pupils may include an addition symbol when adding partial products. For division, some pupils may include a subtraction symbol when subtracting multiples of the divisor.

Addition and subtraction

789 + 642 becomes	874 – 523 becomes	932 - 457 becomes	932 – 457 becomes
789	874	⁸ ¹² ¹ 9 3 2	9 3 2
+ 6 4 2	- 5 2 3	- 4 5 7	- 4 5 7
1 4 3 1	3 5 1	4 7 5	4 7 5
Answer: 1431	Answer: 351	Answer: 475	Answer: 475

Short multiplication

4 × 6 becomes		342 × 7 becomes					2741 × 6 become								
		2	4				3	4	2			2	7	4	1
	×		6			×			7		×				6
	1	4	4			2	3	9	4		1	6	4	4	6
		2					2	1				4	2		
,	Answ	er: '	144			Ans	wer	: 23	94		A	nsw	er: 1	64	46

Long multiplication

24 × 16 becomes	124 × 26 becomes	124 × 26 becomes					
2 2 4	1 2 1 2 4	1 2 1 2 4					
× 1 6	× 26	× 26					
2 4 0	2 4 8 0	744					
144	744	2480					
3 8 4	3 2 2 4	3 2 2 4					
	1 1	1 1					
Answer: 384	Answer: 3224	Answer: 3224					

Short division

Long division

432 + 15 becomes				432 + 15 becomes					432 + 15 becomes							
		2	8	r 12				2	8					2	8	. 8
15	4	3	2		1	5	4	3	2		1	5	4	3	2	0
	з	0	0				3	0	0	15×20			3	0	\downarrow	
	1	3	2				1	3	2				1	3	2	
	1	2	0				1	2	0	15×8			1	2	0	↓
	_	1	2					1	2					1	2	ò
														1	2	0
						12	=	4								0
Answer: 28 remainder 12			Answer: 28 $\frac{4}{5}$					Answer: 28-8								

Crown copyright 2013

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. Reference: DFE-00180-2013